

Trust | Deliver | Learn

MOLECULAR MODEL SET INORGANIC & ORGANIC

CAT NO. SET00604

Instruction Manual

MOLECULAR MODEL

SET FOR BASIC INORGANIC & ORGANIC

CONTENTS

S.No.	Element	Qty	Colour	Holes	Dia. mm.
1	Carbon	8	Black	4	22
2	Hydrogen	15	White	1	15
3	Nitrogen	4	Blue	4	22
4	Oxygen	6	Red	2	20
5	Sulphur	1	Yellow	4	22
6	Sulphur	1	Yellow	6	22
7	Phosphorous	1	Purple	5	22
8	Halogen	6	Green	1	20
9	Metal	2	Grey	1	15
10	Metal	2	Grey	2	22
11	Metal	2	Grey	3	22
12	Metal	2	Grey	4	22
13	** sp^3	1	Brown	4	22
14	** dsp^3	1	Brown	5	22
15	** d^2sp^3	1	Brown	6	22
LINKS					
16	Medium	24	Grey		
17	Long Flex.	12	Grey		
18	Medium	6	Purple		
19	Instruction	1	Leaflet		

**** Atom-parts** The 3 elements shown ** represent any element having the structures :

sp^3 , tetrahedral, dsp^3 trigonal bipyramidal, d^2sp^3 octagonal

Note : sp^3 (4 - holes tetrahedral) can be used as 3-hole pyramidal in nitrogen since the angles are almost the same and the unused hole has a theoretical significance, i.e. Location of a lone-pair of electrons.

INTRODUCTION

LINKS There are 3 types of links in this set to represent the following bonds.

Medium grey links are used for single covalent bonds as in water H-O-H.

Long grey links are flexible and are used for double (as in oxygen) or triple covalent bonds.

Purple medium links are used for contrast in the following case.

- Dative or coionic bonds as in complex ions, e.g. Tetraaquo -copper ion.
- Representation of ionic bonds in the empirical formula of ionic compounds such as $\text{Na}^+..\text{Cl}^-$

Note: Some compounds have both covalent and ionic bonds in the same molecule e.g. $\text{Na}^+...\text{O}-\text{H}$.

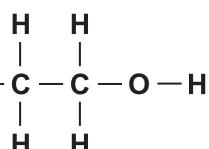
INTRODUCTION TO MOLECULAR MODELS

ATOM Each plastic ball represents an atom, and the plastic balls are colour coded & vary in size representing different elements.

One Atom is represented by a symbol which is a capital letter. e.g. Carbon **C** Oxygen **O** Nitrogen **N**.

The symbol of some elements need 2 letters e.g. Chlorine **Cl**. The first letter only is capital.

A MOLECULE is a group of 2 or more atoms joined together. e.g. A Hydrogen molecule **H - H**.


A COMPOUND is a substance in which two or more different elements are joined together. e.g. Two atoms hydrogen join with one atom oxygen to form one molecule of water.

MOLECULAR FORMULA

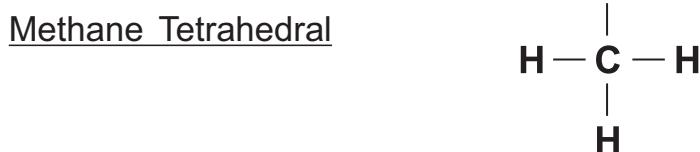
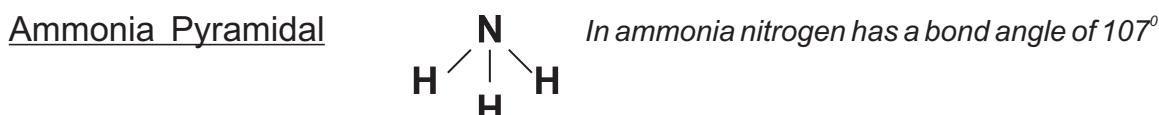
This shows the exact number of the atoms of each elements joined to form one molecule e.g. $\text{C}_2\text{H}_6\text{O}$. This molecule contains 2 carbon, 6 hydrogen, and 1 oxygen atoms.

STRUCTURAL FORMULA

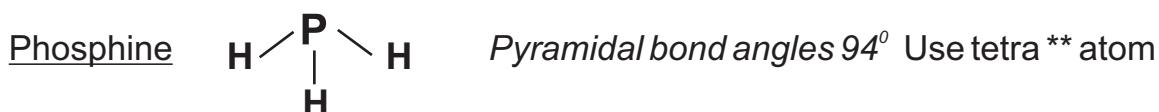
This is a plan view of the arrangement of the atoms in a molecule. Symbols and lines are used to represent the atoms and links.


DOUBLE BONDS

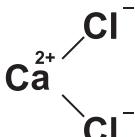
Carbon has a valency of 4 and can form a compounds with oxygen (valency 2). The structural formula is $\text{O}=\text{C}=\text{O}$ Carbon dioxide.

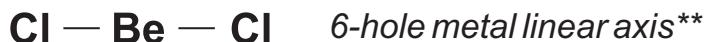


INORGANIC COMPOUNDS

Elements

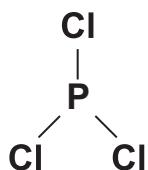


HYDRIDES

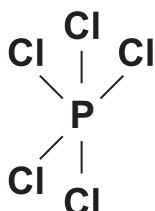

These are compounds of hydrogen with another element


In methane carbon has bond angles of 109.5°

HALIDES chlorides & fluorides

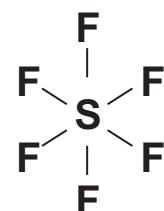


Beryllium Chloride

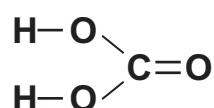


Phosphorus Trichloride Trigonal

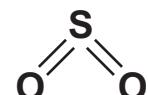
Planar: Use 5 hole



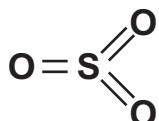
Phosphorus Pentachloride Trigonal Bipyramidal


Sulphur Hexachloride

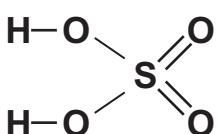
Use 6-hole sulphur


NON - METAL OXIDES and ACIDS

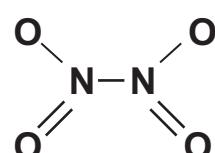
Carbon Dioxide Linear

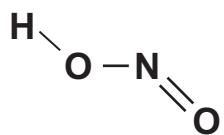

Sulphur Dioxide

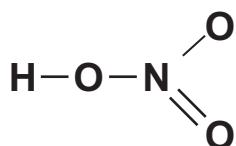
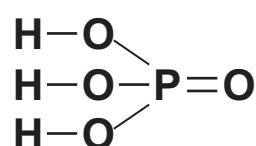
Use 6-hole sulphur Angular 119°


Sulphur Trioxide

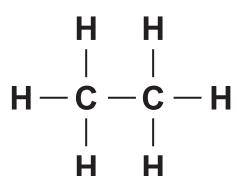
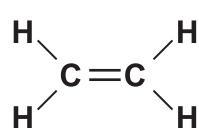
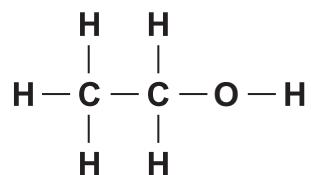
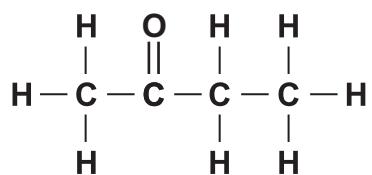
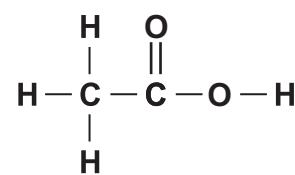
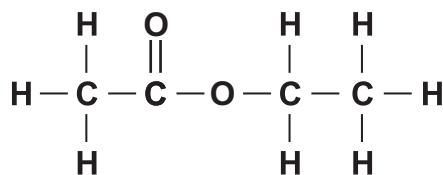
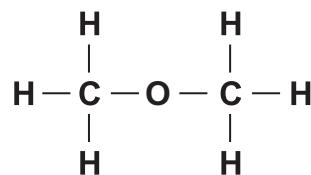
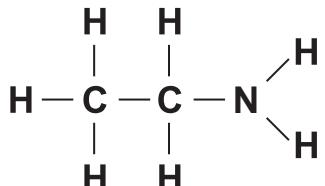
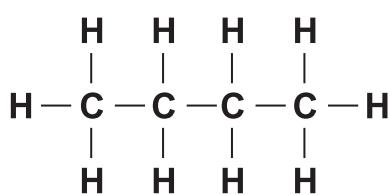
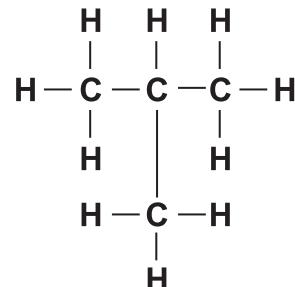
Trigonal planar use 6-hole


Sulphuric Acid

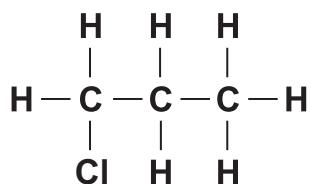

Use 6-hole planar



Dinitrogen Tetroxide Planar Molecule

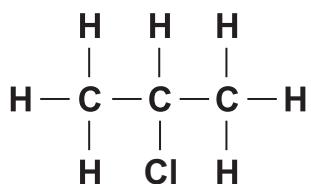
Use two 4-hole nitrogen, four 2-hole oxygen

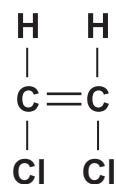
Nitrous Acid Planar MoleculeUse 4-hole nitrogen
phosphorusNitric Acid

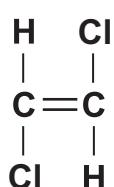

Nitrate group trigonal

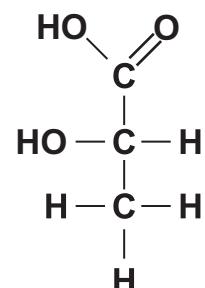
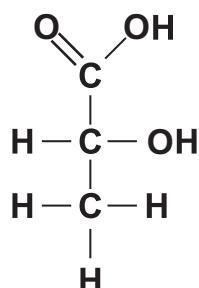
Phosphoric AcidUse 6-hole
planar Use 4-hole nitrogen**ORGANIC COMPOUNDS**

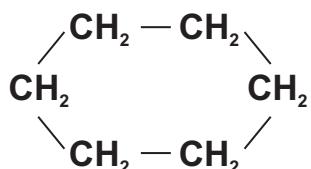

Elementary Selection

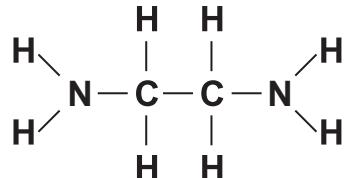
EthaneEtheneEthyneEthanolButanoneEthanoic AcidEthyl EthanoateDimethyl EtherAminoethaneButaneIso-butane

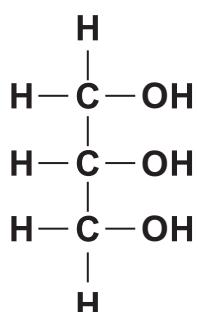

1-chloropropane

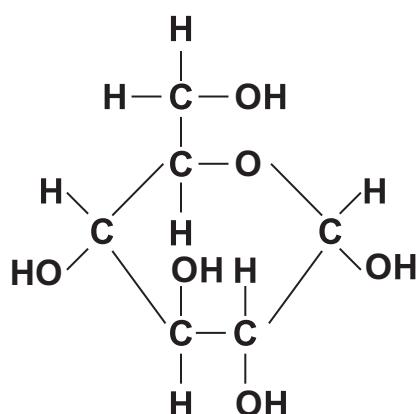

2-chloropropane



Cis 1,2-dichloroethene


Trans 1,2-dichloroethene


Lactic acid


Cyclohexane


Ethylene diamine

Glycerol

D-(+)-Glucose

Manufactured by :

EISCO SCIENTIFIC instructions, content and design is intellectual property of EISCO

U.S. Distributor:

Eisco Scientific

788 Old Dutch Road, Victor, NY 14564

Website: www.eiscolabs.com