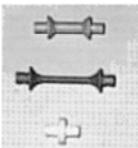




# Organic Student Set

## Cat. No. 2021008

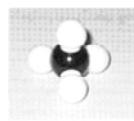

Distributed by  
Serrata Pty. Limited

### Contents

| Qty | Element      | colour | holes / type    | Dia mm    |
|-----|--------------|--------|-----------------|-----------|
| 12  | Carbon C     | black  | 4 tetrahedral.  | 23        |
| 20  | Hydrogen H   | white  | 1               | 17        |
| 6   | Oxygen O     | red    | 2 angular(bent) | 23        |
| 2   | Nitrogen N   | blue   | 4 tetrahedral   | 23        |
| 2   | Nitrogen N   | blue   | 3 pyramidal     | 23        |
| 1   | Sulphur S    | yellow | 4 tetrahedral   | 23        |
| 1   | Sulphur S    | yellow | 6 octahedral    | 23        |
| 4   | Halogen Cl   | green  | 1               | 17        |
| 1   | Phosphorus P | purple | 4 tetrahedral   | 23        |
| 1   | Metal Na     | grey   | 1               | 17        |
| 26  | Link         | grey   | medium          | 19 / 31 * |
| 12  | Link         | grey   | long flexible   | 32 / 43 * |
| 26  | Link         | white  | short           | 2 / 10 *  |
| 1   | tool         |        |                 | * total   |

### Links, Bond types and Use

Medium grey links are used for single covalent bonds.

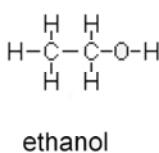



Long grey links are used for double or triple covalent bonds.

Short white links can be used instead of the standard medium link to make compact models.

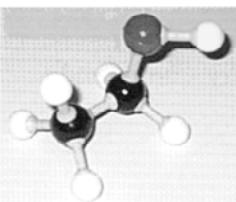


**Open models** are made using medium or long links. Examples of single, double and triple bonds are shown in the photo.




**Compact models** are made using short white links. e.g methane which is made from four hydrogen atoms (white) connected to a central carbon atom using short links.

### Molecular, and Structural Formulae


The Molecular formula shows the exact number of atoms of each element which are present in one molecule, e.g. ethanol  $C_2H_6O$  2 carbon, 6 hydrogen, 1 oxygen

The Structural formula is a plan view of the arrangement of the atoms in a molecule showing symbols for atoms and lines for the bonds between the atoms in the molecule.

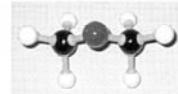
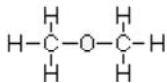


### A Molecular model of ethanol

The structural formula is only a 2-dimensional representation of the molecule, and does not show the true bond angles.



The bond angles in a carbon atom are arranged in a tetrahedral formation and are at  $109.5^\circ$  to each other. A molecular model gives a more accurate idea of the bond angles and orientation of the atoms.

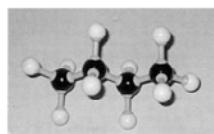


The Constitutional formula is an abbreviated version of a molecule and shows groups of atoms. For example,  $CH_3.CH_2.OH$  is an abbreviated version for the formula of ethanol.

### Isomerism

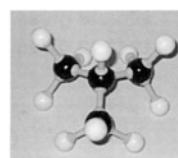
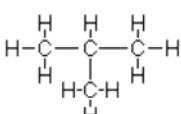
It is possible to make a different structure using the same number of atoms as in



Arrange the atoms as shown across.



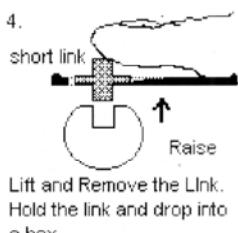
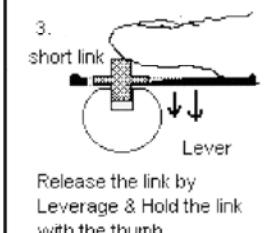
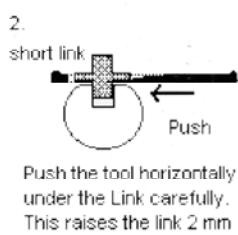
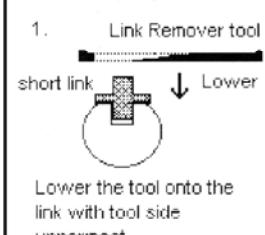

See how the oxygen atom is between the two carbon atoms. This structure is a completely different substance known as an ether. When two or more substances have the same number and kind of atoms but different structures they are called **Isomers**.



Ether is an **Isomer** of Ethanol

### Another example of Isomerism

Butane has the molecular formula  $C_4H_{10}$  Its structural formula is  $CH_3.CH_2.CH_2.CH_3$







The same atoms can be rearranged to make a different structure named iso-butane which is shown in the image across. The structural formula of iso-butane is:



### Disassembly of Compact Models

Please read the following instructions for the recommended use of the Link Remover tool.

#### HOW TO USE THE SHORT LINK REMOVER TOOL



# Organic Student Set

## Cat. No. 2021008

### ORGANIC COMPOUNDS

#### Alkanes General formula $C_nH_{2n+2}$

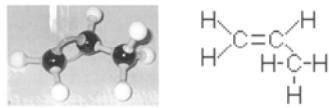
Note: for example If  $n = 6$  then  
 $2n+2 = (2 \times 6) + 2 = 14$   
 and the formula is therefore  $C_6H_{14}$

Methane  $CH_4$  Ethane  $C_2H_6$

Propane  $C_3H_8$  Butane  $C_4H_{10}$

Pentane  $C_5H_{12}$  Hexane  $C_6H_{14}$

Heptane  $C_7H_{16}$  Octane  $C_8H_{18}$


**Alkyl radicals** An alkyl radical is an alkane molecule less one hydrogen.  
 e.g. methane  $CH_4$  gives *CH<sub>3</sub>- methyl*,  
 ethane gives *ethyl*, propane gives *propyl*,  
 butane gives *butyl*, etc

#### Alkenes General formula $C_nH_{2n}$

Ethene  $C_2H_4$



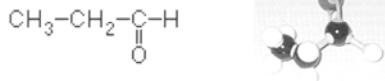
Propene  $C_3H_6$



#### Alkynes General formula $C_nH_{2n-2}$

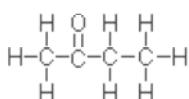
Ethyne  $H-C\equiv C-H$

### Alcohols


#### General formula $C_nH_{2n+1}.OH$

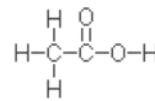
n-propanol  $CH_3-CH_2-CH_2-OH$

iso-propanol  $CH_3-CH(OH)-CH_3$   
 (an isomer)

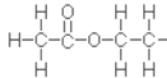

#### Aldehydes General formula $C_nH_{2n+1}.CHO$

e.g. propanal



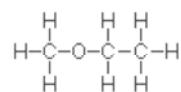

#### Ketones General formula $C_nH_{2n+1}.O. C_nH_{2n+1}$

e.g. butanone




### Carboxylic acids

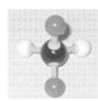
General formula  
 $C_nH_{2n+1}.COOH$   
 e.g. ethanoic acid




#### Esters General formula $C_nH_{2n+1}.COO. C_nH_{2n+1}$ e.g. ethyl ethanoate



### Ethers

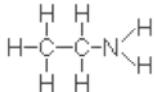

General Formula  
 $C_nH_{2n+1}.O. C_nH_{2n+1}$   
 e.g. methyl ethyl ether



### Halogen Compounds

Monochloromethane  $CH_3Cl$

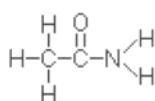
Dichloromethane  $CH_2Cl_2$




Trichloromethane  $CHCl_3$   
 Tetrachloromethane  $CCl_4$

Dichloroethane  $C_2H_4Cl_2$  two isomers are possible. Check by making two models.

### Amines

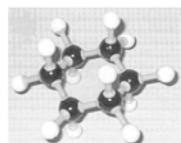

General formula  $C_nH_{2n+1}.NH_2$   
 e.g. ethylamine



### Amides

General formula  $C_nH_{2n+1}.CO.NH_2$

e.g. acetamide

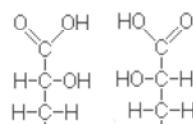



### Cycloalkanes

These are ring compounds

e.g. cyclohexane  $C_6H_{12}$

This molecule is capable of existing in one of two arrangements, known as either the "boat" and "chair".




The photo shows the "chair" See if you can change it to the "boat".

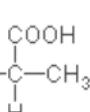
### Some Biochemistry Compounds

#### Lactic acid

Contains an asymmetric carbon atom and can form structures that are mirror images of each other. They are known as optical isomers.



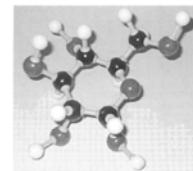
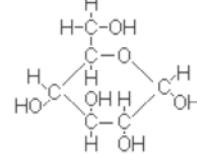
#### Glycerol


This compound can be made from animal fat (glycerol tristearate) which is a very large molecule having 173 atoms

### Amino-acids

e.g. glycine



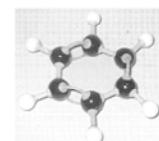
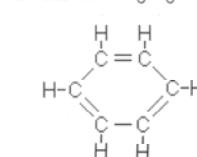


Alanine



Amino-acids combine to form proteins

### Glucose

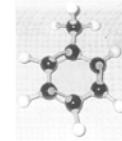
$C_6H_{12}O_6$


Glucose is the simplest of the monosaccharides.

### Some Aromatic Compounds

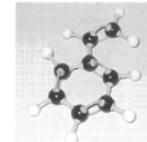
Benzene is the first of the Aromatic family of compounds containing the same type of ring structure.


#### Benzene



#### Toluene

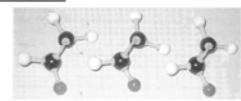
$C_6H_5.CH_3$


The structure consists of a methyl group joined to a benzene ring in place of a hydrogen.

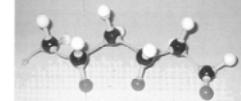


#### Styrene

$C_6H_5.CH=CH_2$


Many molecules of Styrene can combine to form a polymer called polystyrene.




### A Polymer

e.g. Polyvinyl chloride PVC

The Photo shows 3 models of vinyl chloride each with a double bond.



These can polymerise To form a chain known as PolyVinyl chloride (PVC)



Polymerisation involves the opening of the alkene bond to create the connections for chain to form.

Made for Serrata Pty Limited  
 51 Cranstons Road  
 Dural

